Parameter selection in data-driven fault detection and diagnosis of the air conditioning system
نویسندگان
چکیده
Data-driven fault detection and diagnosis system (FDD) has been proven as simple yet powerful to identify soft abrupt faults in the air conditioning system, leading energy saving. However, challenge is obtain reliable operation data from actual building. Therefore, a lab-scaled centralized chilled water was successfully developed this paper. All necessary sensors were installed generate for data-driven FDD. Nevertheless, if practical considered, number of required would be extensive it depends on rooms Hence, parameters impact dataset also investigated critical classifications. The analysis results had identified four FDD: rooms' temperature (TTCx), supplied (TCHWS), flow rate (VCHWS) cooled (TCWS). Results showed that FDD diagnosed all six conditions correctly with proposed more than 92.3% accuracy; only 0.6-3.4% differed original dataset's accuracy. can reduce used buildings, thus reducing installation costs without compromising
منابع مشابه
Fault Detection and Diagnosis of Air-Conditioning Systems using Residuals
A model based fault detection and diagnosis scheme is proposed in this paper and a lumped parameter MIMO model has been considered. The characteristics of single as well as multiple faults using residuals are investigated in air-conditioning (AC) system provided in passenger coach of an Indian Railways. The residuals of the fault are generated by using real life simulator and model. The faults ...
متن کاملFault detection and diagnosis system for air-conditioning units using recurrent type neural network
The airconditioning systems of buildings have been diversified in recent years, and the complexity of the system has been increased. At the same time, stability in the system and the low-running cost are demanded. To solve these problems, various researches have been done. The development of the energy load prediction systems and the faults detection and diagnosis systems have received greater ...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2022
ISSN: ['2502-4752', '2502-4760']
DOI: https://doi.org/10.11591/ijeecs.v25.i1.pp59-67